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1. Introduction. In the problem of incompressible boundary layer flow along a 
semi-infinite flat plate against an adverse pressure gradient, the non-dimensional 
free stream velocity is taken to be 

Ui = 1 - x 

where the plate lies along the positive part of the x-axis. The von Mises equation 
for incompressible flow is, in the usual non-dimensional notation, 

az a2z 
( 1 ) - = u aip2 

where 
2 2 z = Uj - U . 

On the plate, d = -2(1 - x) and u is zero and so from (1), a2 is infinite. This ax ak 
unpleasant singularity on the plate caused G6rtler [1] to abandon finite difference 
methods of solution of the von Mises equation and it looked as if the comparative 
simplicity of (1) could never be utilized from the point of view of numerical solution. 
Thomson and the present author [2], however, showed that finite difference solutions 
are possible using the von Mises equation and obtained the expansion 

(2) ; 31 2 (a2 az\ 7 (azy 
2 

3/2 ? di2 + k~ axh~=o 18a' kaxh= 

for the velocity in the vicinity of the plate, where a depends only on x. This expres- 
sion for u incorporates the conditions of compatibility at the plate and provides a 
means of obtaining a value of the skin friction on the plate from the computed values 
of the velocity in the boundary layer. The skin friction is given by the value of 

1 az 2 

2 a4l on the plate, which from (2) is equal to 2a2. 

The calculation in [2], however, was carried out on a desk computer and its ex- 
tent was limited, particularly in the vicinity of the plate. In the present paper it is 
hoped to remedy this defect by using a finite difference form of the von Mises equa- 
tion which is particularly suitable for exploring the region near the plate, and 
carrying out the calculation on an automatic computer. 

2. The Finite Difference Equation. The four-point explicit difference replace- 
ment of (1) with V/ = rt and x = sh is 

Zr s+l = Azr,+,s + Bzr,, + Czr,l s 
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where A = C = bu , and B = 1 - 26ur, , with a = h/f2, where h and f are the 
non-dimensional mesh lengths in the x- and AI-directions respectively. Since 
A + B + C = 1, A > 0, C > 0, it follows from Richtmyer [3] that z is bounded 
provided B > 0, which leads to 

< 
2ur,,s 

This is a very satisfactory condition, since it means that in the region next to the 
plate where u is small, h can be chosen correspondingly large for a given value of f. 
From the point of view of computation, however, it is much better to keep h con- 
stant, and so f can be reduced in the vicinity of the plate. This enables the region 
next to the plate to be examined in greater detail than the rest of the field. 

With this in view, a distribution of nodes in the A/-direction is chosen according 
to the formula 

(3) tr = r(r + )fo (r = 0, 1, 2 3, *. 20). 

In the x-direction, the nodes are given by 

xs = sh (s = 0, 1, 2,3< **). 

The four-point forward difference replacement of (1) is now 

(4) Zr,s+l = Zr,s + Ur,, 6ar+l,. 
+ (r + 1)Zr_l,s - 2(r + 12)Zr,s 

where 6. = h/to2 and (4) can be rearranged to give 

Zr,s+l = Dz,+i,, + Ezr,, + Fz,-1,8 

where 

D - Ur,% > 0 
(r + ,) (r+1) 

E 1 ~~2SUr, s 
r(r + 1) 

F bur, k+s > ? 
r (r ? 1)2 

and D + E + F 1. If 

(5) < r(r + 1) 

it follows that E > 0, and so the theoretical solution of the difference equation (4) 
is bounded. However, in view of the non-linear nature of the difference equation, 
condition (5) does not necessarily guarantee the boundedness of the numerical solu- 
tion of (4), and a watchful eye should be kept on the calculation in case any instability 
arises. 

The principal part of the truncation error in (4) is given by 

1 2 h2Z 1 u3 3z 
2- h~ 3 2- Uo a.t, 
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In the vicinity of the plate, from (2), 

a_ 1 -3/2 

and so the truncation error at nodes near the plate becomes approximately 

-x)h. 

Thus, although 
a,3 

and higher derivatives may be very large in the neighborhood of 

the plate, the truncation error can in fact be small if h is small. 

3. The Calculation. In the calculation carried out in the present paper, the 
starting values of z at x = 0.05 are obtained from Howarth [4] after a certain 
amount of computation. The values to eight places of decimals are given in Table I. 
The mesh lengths are h = 0.0005 and to = 0.01, and so a = 5. It can be seen from 
the last column of Table I that the inequality (5) is satisfied for all r at the start 
of the computation. Since the values of u decrease subsequently at nodes in the 
same row, there is no danger of condition (5) being violated anywhere in the field. 

The calculation was carried out explicitly using (4) on a DATATRON 205 high- 
speed computer, and values of z obtained were rounded off after eight places of 
decimals. The machine was allowed to run until a value of z was obtained on 
1 = 0.01 which exceeded the boundary value on ,6 = 0 at the same station x. The 

machine was then confronted with the task of taking the square root of a negative 
quantity, and so ceased to print out. This actually occurred at x = 0.137. Thus, 

TABLE I 

r 41 u z r(r +1) 
7 U Z ~~~~~~~~~~~~~~~~~~~2u 

0 0 0 0.90250000 
1 0.01 0.1480 0.88059600 6.76 
2 0.03 0.2620 0.83385600 11.45 
3 0.06 0.3726 0.76366924 16.10 
4 0.10 0.4846 0.66766284 20.64 
5 0.15 0.5910 0.55321900 25.38 
6 0.21 0.6845 0.43395975 30.68 
7 0.28 0.7673 0.31375071 36.49 
8 0.36 0.8337 0.20744431 43.18 
9 0.45 0.8831 0.12263439 50.96 

10 0.55 0.9165 0.06252775 60.01 
11 0.66 0.9355 0.02733975 70.55 
12 0.78 0.9452 0.00909696 82.52 
13 0.91 0.9487 0.00246831 95.92 
14 1.05 0.9499 0.00018999 110.54 
15 1.20 0.9500 0.00000000 126.32 
16 1.36 0.9500 0.00000000 143.16 
17 1.53 0.9500 0.00000000 161.05 
18 1.71 0.9500 0.00000000 180.00 
19 1.90 0.9500 0.00000000 200.00 
20 2.10 0.9500 0.00000000 221.05 
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TABLE II 

x z u 

0.0500 0.88059600 0.1480 
0.0600 0.86538596 0.1349 
0.0700 0.84951282 0.1244 
0.0800 0.83344382 0.1125 
0.0900 0.81730237 0.1039 
0.1000 0.80118136 0.0939 
0.1100 0.78516342 0.0833 
0.1200 0.76935383 0.0713 
0.1250 0.76158997 0.0635 
0.1300 0.75401304 0.0537 
0.1350 0.74695089 0.0357 
0.1355 0.74632746 0.0321 
0.1360 0.74574286 0.0274 
0.1365 0.74521891 0.0203 

values of z were obtained in the field from x = 0.05 to x = 0.1365 at intervals of 
0.0005 for twenty values of A' between 4' = 0 and 41 = 2.10. The values of z, to- 
gether with the corresponding values of u obtained at 41 = 0.01, are shown in Table 
II for several stations x. The actual running time of the machine was determined 
by the time required to print out the results. When only the values of z at i/ = 0 
and 4' = 0.01 were printed out, the machine took only four minutes for the entire 
run. This gives a good indication of the simplicity of the present scheme for solving 
the boundary fayer equation. 

4. Comparison of Results. Accuracy must not be sacrificed for speed and 
simplicity of calculation, however, so the results are now compared with those ob- 
tained by Leigh [5], who solved the boundary layer equations numerically with u as 
a function of x and y, using the approximation of Hartree and Womersley [6]. It is 
sufficient to say that the results in the present calculation at x = 0.12 agree with 
those of Leigh at x = 0.1198 to within 0.5 per cent. For example, at 4' = 0.01 
X = 0.12, the node in the present calculation where the disagreement is likely to be 
greatest, the value of u is 0.0713, compared with a value of u between 0.071 and 
0.072 from Leigh at 4' = 0.01, x = 0.1198. It is unwise to quote Leigh's results more 
accurately at the nodes of the present calculation, as numerical integration and 
interpolation are necessary to obtain them from his original calculation. The close 
agreement is very encouraging considering the vastly different natures of the two 
calculations. Leigh started his calculation at x = 0.10 with values taken from 
Hartree [7], whereas the present calculation commenced at x = 0.05 with values 
taken from Howarth. Also, Leigh solved a set of simultaneous linear equations at 
each step x, whereas the present calculation involves a simple explicit calculation at 
each node. 

5. The Singular Solution. Returning to the calculation in this paper, it is inter- 
esting to examine the solution in the neighborhood of the breakdown station Xb which 

is somewhere between x = 0.1365 and x = 0.1370. By plotting log [-2( ?) ] 
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against log (Xb - x) for different values of Xb, it is found that 

1 

~ = a(Xb -X) [ 2 (A4fp=o] 
where the corresponding values of Xb and q are 

Xb 0.1369 0.1368 0.1367 0.1366 
q 0.73 0.67 0.60 0.52 

The values of x considered for each Xb are 0.1365, 0.1360, 0.1355, 0.1350, and at 

each of these stations is given by 

(Az\ __ z=0.01 - Z4-0 

\A-41)4_o 0.01 

Despite the fact that the above result is based on a breakdown point in a finite 
difference calculation, there is a distinct resemblance between it and the result 

( )Y a (x,S - X) 
dyv=o 

obtained by Goldstein [8] from the asymptotic solution of the differential equation 
valid in the neighborhood of the separation point, where x, is the separation point, 

and (- ) is the skin friction in the physical (x, y) plane. Consequently, it is felt 
_aY v=o 

that further finite difference calculations using the von Mises variables may go a 
long way towards determining the nature of the solution of the boundary layer 
equation in the neighborhood of the separation point. 
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